from google import genaifrom google.genai import typesimport dotenvimport osdotenv.load_dotenv()def search_similar_professors_by_research_area_and_description(query: str) -> dict: """Takes the user's query and embeds it then uses the embedded query to search for similar professors Args: query (str): The user's query Returns: A list of professors who are similar to the user's query """ embedded_query_vector = model.encode(query).astype(float).tolist() results = db.query("search_similar_professors_by_research_area_and_description", {"query_vector": embedded_query_vector, "k": 5}) return resultsclient = genai.Client()config = types.GenerateContentConfig( tools=[search_similar_professors_by_research_area_and_description])response = client.models.generate_content( model="gemini-2.5-flash", contents="Find me a professor who does computer vision for basketball", config=config,) print(response.text)